MaLGa logoMaLGa black extendedMaLGa white extendedUniGe ¦ MaLGaUniGe ¦ MaLGaUniversita di Genova | MaLGaUniversita di GenovaUniGe ¦ EcoSystemics

LCSL

The Laboratory for Computational and Statistical Learning (LCSL) is one of the research units within MaLGa, the machine learning center of the University of Genova. LCSL focuses on the development of efficient and reliable machine learning algorithms blending tools from statistics, optimization, and regularization theory.

Our goal is to develop theoretically grounded and practical machine learning algorithms. In collaboration with other MaLGa units and external collaborators we work on foundational aspects of Machine Learning (CHARML) and also a number of applications including vision (MLV), robotics, and biological behavior (PiMLB).

People

  • Annalisa
    Barla

  • Simone
    Di Marino

  • Cesare
    Molinari

  • Lorenzo
    Rosasco

  • Silvia
    Villa

  • Marco
    Rando

  • Edoardo
    Caldarelli

  • Emilia
    Magnani

  • Arnaud
    Watusadisi

  • Ilaria
    Stanzani

  • Marco
    Letizia

  • Hippolyte
    Labarrière

  • Shuo
    Huang

  • Emanuele
    Naldi

  • Pietro
    Zerbetto

  • Joachim
    Bona-Pellis…

  • Lorenzo
    Fiorito

Past People

People
  • Cheik Traoré | 2023 → 2024 | Post-doctoral fellow | Optimization

  • Stefano Ravera | 2022 → 2024 | Research Scholar | Data handling for large-scale AI applications

  • Francesco Montagna | 2021 → 2024 | PhD student

  • Rayan Autones | 2024 | Student

  • Andrea Della Vecchia | 2022 → 2024 | Post-doctoral fellow | Machine Learning

  • Elena Milano | 2024 | Research Scholar | Content strategy for ethical-AI communication

  • Ettore Fincato | 2023 → 2024 | PhD student

  • Cristian Jesus Vega Cereno | 2021 → 2024 | PhD student | Optimization

  • Gabriele Bortolai | 2024 | Student

  • Jonathan Chirinos Rodriguez | 2024 | PhD student

  • Antoine Chatalic | 2021 → 2024 | Post-doctoral fellow

  • Rosanna Turrisi | 2023 → 2024 | Post-doctoral fellow | Machine Learning

  • Elisa Maiettini | 2021 → 2023 | Post-doctoral fellow

  • Nicolas Schreuder | 2020 → 2023 | Post-doctoral fellow

  • Vassilis Apidopoulos | 2019 → 2023 | Post-doctoral fellow

  • Ilaria Stanzani | 2023 | Research Scholar | Machine Learning

  • Federico Ceola | 2020 → 2023 | PhD student

  • Andrea Maracani | 2020 → 2023 | PhD student

  • Cheik Traoré | 2020 → 2023 | PhD student | Optimization

  • Paolo Didier Alfano | 2022 → 2023 | Research Scholar | Machine Learnin, Robot Vision

  • Andrea Della Vecchia | 2022 → 2023 | Research Scholar | Machine Learning

  • Silvia Vertemati | 2023 | Student

  • Daniele Giampaoli | 2022 | Student | Structured Learning |

  • Sophie Langer | 2022 | Post-doctoral fellow

  • Giulia Denevi | 2021 → 2022 | Post-doctoral fellow

  • Raffaello Camoriano | 2018 → 2022 | Post-doctoral fellow

  • Alexandra Gronholz | 2021 → 2022 | Post-doctoral fellow | Machine Learning

  • Paolo Didier Alfano | 2019 → 2022 | PhD student | Machine Learning and vision

  • Denise D'Auria | 2022 | Student | Bioinformatics

  • Andrea Della Vecchia | 2019 → 2022 | PhD student | Machine Learning

  • Stefano Vigogna | 2020 → 2022 | Post-doctoral fellow

  • Sara Frusone | 2022 | Student

  • Nicolò Pagliana | 2019 → 2022 | PhD student | Machine Learning

  • Mathurin Massias | 2020 → 2022 | Post-doctoral fellow

  • Davide Garbarino | 2018 → 2021 | PhD student | Machine Learning

  • David Kozak | 2021 | PhD student

  • Rodolfo Assereto | 2021 | Student | Machine Learning

  • Simone Grossi | 2020 → 2021 | Research Scholar | Data driven web redesign

  • Sofiane Tanji | 2021 | Student

  • Carlo Ciliberto | 2019 → 2020 | Post-doctoral fellow

  • Jaouad Mourtada | 2020 | Post-doctoral fellow

  • Junhong Lin | 2019 → 2020 | Post-doctoral fellow

  • Enrico Cecini | 2020 | PhD student | Machine Learning

  • Maximilian Nickel | 2020 | Post-doctoral fellow

  • Guillaume Garrigos | 2019 → 2020 | Post-doctoral fellow

  • Gian Maria Marconi | 2020 | PhD student | Machine Learning

  • Nicole Mucke | 2020 | Post-doctoral fellow

  • Nicolò Ginatta | 2019 → 2020 | PhD student | Machine Learning

  • Dominic Richards | 2020 | PhD student

  • Veronica Tozzo | 2020 | Research Scholar | Machine Learning

  • Riccardo Bianchini | 2020 | Student | Machine Learning

  • Luigi Carratino | 2017 → 2020 | Post-doctoral fellow

  • Fabio Anselmi | 2017 → 2019 | Post-doctoral fellow | Machine Learning

  • Daniele Calandriello | 2018 → 2019 | Post-doctoral fellow

  • Vincenzo Petito | 2019 | Student | Machine Learning

  • Amartya Sanyal | 2019 | Student

  • Manuel Orlandi | 2018 | Student | Machine Learning

  • Lorenzo Spano | 2018 | Student | Machine Learning

  • Luca Biggio | 2018 | Student | Machine Learning

  • Michele Dall’Oro | 2017 | Student | Machine Learning

  • Luca Demetrio | 2017 | Student | Machine Learning

  • Alessandro Rudi | 2014 → 2016 | Post-doctoral fellow

  • Daniele Surpano | 2016 | Student | Machine Learning

  • Alessio Russo | 2016 | Student | Machine Learning

  • Soahib Ali Syed | 2013 → 2016 | PhD student | Machine Learning

  • Gianluca Salvaia | 2016 | Student | Machine Learning

  • Luigi Carratino | 2016 | Student | Machine Learning

  • Alessandro Rudi | 2014 | PhD student | Machine Learning

  • Nicola Rebagliati | 2009 | Student | Machine Learning

    20 of 69 - View more  

    Research projects

    Most recent LCSL research projects

    Publications

    Most recent LCSL publications

    TitleYearAuthorVenue
    Iterative regularization for low complexity regularizers2024Molinari C.; Massias M.; Rosasco L.; Villa S.NUMERISCHE MATHEMATIK
    SGD vs GD: high noise and rank shrinkage2024Mengjia Xu Tomer Galanti Akshay Rangamani Lorenzo Rosasco Andrea Pinto Tomaso PoggioCBMM Memo No. 144
    Neural reproducing kernel Banach spaces and representer theorems for deep networks2024F Bartolucci E De Vito L Rosasco S VigognaArXiv Preprint
    A New Formulation for Zeroth-Order Optimization of Adversarial EXEmples in Malware Detection2024M Rando L Demetrio L Rosasco F RoliArXiv Preprint
    Mapping the evolution of design research: a data-driven analysis of interdisciplinary trends and intellectual landscape2024A Vian G Carella D Pretolesi A Barla F Zurloin Gray, C., Ciliotta Chehade, E., Hekkert, P., Forlano, L., Ciuccarelli, P., Lloyd, P. (eds.), DRS2024: Boston, 23–28 June, Boston, USA